Название: Federated Learning for Wireless Networks
Автор: Choong Seon Hong, Latif U. Khan, Mingzhe Chen
Издательство: Springer
Серия: Wireless Networks
Год: 2021
Страниц: 257
Язык: английский
Формат: pdf (true)
Размер: 10.6 MB
Recently Machine Learning schemes have attained significant attention as key enablers for next-generation wireless systems. Currently, wireless systems are mostly using Machine Learning schemes that are based on centralizing the training and inference processes by migrating the end-devices data to a third party centralized location. However, these schemes lead to end-devices privacy leakage. To address these issues, one can use a distributed machine learning at network edge. In this context, Federated Learning (FL) is one of most important distributed learning algorithm, allowing devices to train a shared machine learning model while keeping data locally. However, applying FL in wireless networks and optimizing the performance involves a range of research topics. For example, in FL, training machine learning models require communication between wireless devices and edge servers via wireless links. Therefore, wireless impairments such as uncertainties among wireless channel states, interference, and noise significantly affect the performance of FL. On the other hand, federated-reinforcement learning leverages distributed computation power and data to solve complex optimization problems that arise in various use cases, such as interference alignment, resource management, clustering, and network control. Traditionally, FL makes the assumption that edge devices will unconditionally participate in the tasks when invited, which is not practical in reality due to the cost of model training.