Название: Handbook of Face Recognition: The Deep Neural Network Approach, 3rd Edition
Автор: Stan Z. Li, Anil K. Jain, Jiankang Deng
Издательство: Springer
Год: 2024
Страниц: 473
Язык: английский
Формат: pdf (true)
Размер: 12.7 MB
Over the past decade, Deep Learning has emerged as a powerful tool for solving a wide range of complex problems in Computer Vision, speech recognition, and Natural Language Processing (NLP). One area where Deep Learning has shown particularly promising results is in face recognition. This highly anticipated new edition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational recognition systems. After a thorough introduction, each subsequent chapter focuses on a specific topic, reviewing background information, up-to-date techniques, and recent results, as well as offering challenges and future directions. Face recognition is a critical technology with applications in security, surveillance, biometrics, and human-computer interaction. Deep learning-based approaches have achieved state-of-the-art performance in face recognition tasks, enabling accurate and efficient recognition of faces in a variety of settings. This handbook brings together some of the leading experts in the field of deep learning-based face recognition to provide a comprehensive overview of the current state of the art. This book serves as an all-encompassing resource, providing theoretical underpinnings, algorithms, and implementations to guide students, researchers, and practitioners across all aspects of face recognition. In addition to showcasing the most recent advancements in methods and algorithms, the book also supplies code and data to facilitate hands-on learning and the creation of reproducible face recognition algorithms and systems (Appendix) through Deep Learning programming. The code and data will be accessible on GitHub and will be updated regularly to keep the materials up to date.