Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB

Автор: SCART56 от 13-02-2023, 11:58, Коментариев: 0

Категория: КНИГИ » АППАРАТУРА


Название: Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB
Автор: Alexander D. Poularikas
Издательство: CRC Press
Год: 2015
Страниц: 361
ISBN: 1482253356, 9781482253351
Формат: PDF
Размер: 22 Мб
Язык: English

Adaptive filters are used in many diverse applications, appearing in everything from military instruments to cellphones and home appliances. Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® covers the core concepts of this important field, focusing on a vital part of the statistical signal processing area—the least mean square (LMS) adaptive filter.
Discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions Explains how to find the eigenvalues and eigenvectors of a matrix and the properties of the error surfaces Explores the Wiener filter and its practical uses, details the steepest descent method, and develops the Newton’s algorithm Addresses the basics of the LMS adaptive filter algorithm, considers LMS adaptive filter variants, and provides numerous examples Delivers a concise introduction to MATLAB®, supplying problems, computer experiments, and more than 110 functions and script files
Featuring robust appendices complete with mathematical tables and formulas, Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® clearly describes the key principles of adaptive filtering and effectively demonstrates how to apply them to solve real-world problems.




Скачать Alexander D. Poularikas - Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB

Скачать с fikper.com
Скачать с turbo.to





ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.