Название: Алгебраическая топология
Автор: С. Лефшец
Издательство: Иностранной литературы
Год: 1949
Формат: djvu
Страниц: 505
Размер: 12,7 Мб
Язык: русский
Предлагаемая вниманию читателя книга принадлежит перу одного из крупных современных геометров, С. Лефшеца, основные работы которого относятся к алгебраической геометрии и к топологии. Обе главнейшие специальности Лефшеца тесно переплетаются между собой: в алгебраической геометрии Лефшец является основателем нового, топологического направления; с другой стороны, предложенный им метод "умножения и пересечения" в значительной степени явился результатом перенесения в область топологии точек зрения и приемов, взятых из алгебраической геометрии. Этот метод является фундаментом гомологической теории непрерывных отображений многообразий, основателем которой является тоже Лефшец; сила этой теории продемонстрирована формулой, дающей алгебраическое число неподвижных точек любого непрерывного отображения. Лефшец впервые доказал эту формулу своим методом "умножения и пересечения" для непрерывных отображений многообразий; впоследствии Хопф дал другое элементарное доказательство для любых полиэдров, после чего Лефшец обобщил свою формулу на общий случай локально-стягиваемых компактов.
Значительное отражение в книге Лефшеца нашли работы советских топологов; так, например, исследование компактов и более общих топологических пространств методами комбинаторной топологии, являющееся одним из основных достижений московской топологической школы, подверглось Лефшецем дальнейшей разработке и заняло существенное место в его книге "Алгебраическая топология", к краткой характеристике которой я сейчас и перехожу.
Книга эта представляет собой построение комбинаторной топологии в самых общих предположениях. Она не является учебником топологии, ни, тем более, книгой для первого чтения по этой области математики: для этого предпосылки, выбранные автором для изложения различных теорий, чересчур общи, а принятый метод изложения чересчур абстрактен (все изложение, кстати, последовательно ведется "от общего к частному". Но для читателя, уже знакомого с основами комбинаторной топологии по тому или иному из довольно многочисленных имеющихся в настоящее время изложений, в особенности же для сложившегося математика, желающего работать как собственно в комбинаторной топологии, так и в области больших общих проблем теоретико-множественной топологии (без комбинаторных методов к этим проблемам в настоящее время и не подступишься!), книга Лефшеца может быть очень полезна, так как в ней изложен весь ассортимент выработанных к настоящему моменту методов гомологической топологии, причем это изложение сделано с учетом различных возможностей обстановки, в которой эти методы придется применять.