Название: Математический анализ. В 4 книгах
Автор: Шилов Г.Е.
Издательство: М., Наука
Год: 1969-1972
Формат: DjVu
Качество: Отсканированные страницы + OCR
Страниц: 428 +534+363+624
Размер: 22.5 MB
Язык: Русский
1.МАТЕМАТИЧЕСКИЙ АНАЛИЗ (КОНЕЧНОМЕРНЫЕ ЛИНЕЙНЫЕ ПРОСТРАНСТВА)
Издание соответствует в основном программе университетского курса линейной алгебры и рассчитано в первую очередь на студентов математических, физических и других естественнонаучных специальностей. Для ее чтения необходимо, как правило, владение лишь элементарной математикой; в отдельных случаях используются сведения из математического анализа с соответствующими отсылками. В главе 1 излагается теория определителей. В главах 2—7 рассматривается аффинная теория линейных пространств (над произвольным числовым полем), в главах 8—10—теория евклидовых и унитарных пространств. В главе 11 описываются алгебры линейных операторов в конечномерных пространствах и в главе 12—соответствующие категории.
2.МАТЕМАТИЧЕСКИЙ АНАЛИЗ (ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО). Части 1 и 2.
Книга представляет собой учебное пособие по курсу математического анализа. Она не является учебником и не следует официальным программам курса математического анализа, хотя формально знаний основ анализа не предполагается. Книга рассчитана в первую очередь на студентов, знакомых уже с элементами дифференциального и интегрального исчисления и желающих углубить свои знания. В гл. 1 дается аксиоматическое построение теории вещественных чисел. В гл. 2 излагаются элементы теории множеств и теории математических структур. Гл. 3 посвящена метрическим пространствам. В гл. 4 строится общая теория пределов, использующая упрощенную схему фильтров Картана. В гл. 5 рассматривается понятие непрерывности и изучаются элементарные трансцендентные функции. В гл. 6 излагается теория рядов — числовых и функциональных. Гл. 7—8 посвящены собственно дифференциальному исчислению, а гл. 9—интегральному исчислению. Гл. 10 вводит читателя в теорию аналитических функций; ее методы используются, в частности, в гл. 11 о несобственных интегралах.
3.МАТЕМАТИЧЕСКИЙ АНАЛИЗ (ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО). Часть 3.
Первые две части книги были изданы ранее. Содержание третьей части: глава 12 «Основные структуры математического анализа» (линейные, метрические, нормированные пространства, нормированные алгебры; гильбертовы пространства), глава 13 «Дифференциальные уравнения» (для функций со значениями в нормированием пространстве), глава 14 «Ортогональные разложения» (геометрическая теория и вопросы сходимости рядов Фурье), глава 15 «Преобразование Фурье» с выходом в комплексную область, и, в частности, с преобразованием Лапласа, и глава 16 «Пространственные кривые», где излагается теория кривизны для многомерных кривых.
4.МАТЕМАТИЧЕСКИЙ АНАЛИЗ (ФУНКЦИИ НЕСКОЛЬКИХ ВЕЩЕСТВЕННЫХ ПЕРЕМЕННЫХ), части 1, 2.
Как и предыдущие книги того же автора — эта книга представляет собою учебное пособие по курсу математического анализа. Она не является учебником и не следует официальным программам курса; она рассчитана в первую очередь на студентов, знакомых уже с элементами дифференциального и интегрального исчисления в желающих углубить свои знания. В гл. 1 строится теория дифференцирования для функций от конечного или даже бесконечного множества независимых переменных. В гл. 2 рассматриваются высшие производные. В гл. 3 строится теория интегрирования для функций нескольких переменных. На основе построенного аппарата в гл. 4 излагается классический векторный анализ, в гл. 5—классическая дифференциальная геометрия, которая развивается в гл. 6 в риманову геометрию. В гл. 7 излагаются избранные вопросы анализа на дифференцируемых многообразиях, в частности теория дифференциальных антисимметричных форм с соответствующими интегральными теоремами.
Скачать Шилов Г.Е. - Математический анализ. В 4 книгах [19969-1972; DjVu]