Теория нахождения корней алгебраических уравнений (в символьном представлении)

Автор: umkaS от 28-10-2019, 22:28, Коментариев: 0

Категория: КНИГИ » УЧЕБНАЯ ЛИТЕРАТУРА

Название: Теория нахождения корней алгебраических уравнений (в символьном представлении)
Автор: Незбайло Т.Г.
Издательство: СПб. : КОРОНА-Век
Год: 2007
Cтраниц: 207
Формат: pdf
Размер: 13 мб
Язык: русский

Книга посвящена решению самой старой (имеющей более чем тысячелетнюю историю) и наиболее известной, но так до конца и не решенной математической проблеме, а именно: нахождению формул для корней алгебраических уравнений произвольной степени. После того как Сципион Дель Ферро в 1530 году нашел формулы для вычисления корней кубического уравнения, а в 1545 Феррари установил эти формулы для корней уравнения четвертой степени, большинство математиков всего мира стали безуспешно искать формулы для корней алгебраического уравнения пятой степени. Только в 1834 году Абель, а затем и Галуа доказали, что корни алгебраических уравнений степени выше четыре в радикалах получить нельзя. Но это, однако, не запрещает им существовать в классе трансцендентных функций, что подтверждается работами многих известных математиков. Тем не менее, даже в этом случае получить эти формулы в общем виде, с позиции единого научного подхода пока никому не удалось. В данной работе излагается единая теория нахождения формул для корней алгебраических уравнений с произвольными коэффициентами. Кроме самих формул приводится также много примеров, иллюстрирующих излагаемую теорию. Также представлены программы для ЭВМ, позволяющие распечатать эти формулы для уравнения заданной степени.

Скачать Незбайло Т.Г. - Теория нахождения корней алгебраических уравнений (в символьном представлении)





ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.