Автор: Alireza Rezvanian, Ali Mohammad Saghiri, Seyed Mehdi Vahidipour
Название: Recent Advances in Learning Automata
Издательство: Springer
Год: 2018
ISBN: 9783319724270
Серия: Studies in Computational Intelligence (Book 754)
Язык: English
Формат: pdf, epub
Размер: 25,6 mb
Страниц: 458
Learning automata (LAs) have proven to be effective decision-making agents, especially within unknown stochastic environments. The book starts with a brief explanation of LAs and their baseline variations. It subsequently introduces readers to a number of recently developed, complex structures used to supplement LAs, and describes their steady-state behaviors. These complex structures have been developed because, by design, LAs are simple units used to perform simple tasks; their full potential can only be tapped when several interconnected LAs cooperate to produce a group synergy.
In turn, the next part of the book highlights a range of LA-based applications in diverse computer science domains, from wireless sensor networks, to peer-to-peer networks, to complex social networks, and finally to Petri nets. The book accompanies the reader on a comprehensive journey, starting from basic concepts, continuing to recent theoretical findings, and ending in the applications of LAs in problems from numerous research domains. As such, the book offers a valuable resource for all computer engineers, scientists, and students, especially those whose work involves the reinforcement learning and artificial intelligence domains.