Название: Смешанная задача для гиперболического уравнения
Автор: Ладыженская О.А.
Издательство: М., Государственное издательство технико-теоретической литературы
Год: 1953
Формат: PDF/DjVu
Качество: Отсканированные страницы
Страниц: 282
Размер: 50.3 MB
Язык: Русский
Основные задачи для линейных уравнений гиперболического типа — это задача Коши и смешанная задача. Трудность этих задач и достигнутые в отношении их решения результаты совершенно различны. Это видно хотя бы на примере волнового уравнения в обычном трехмерном пространстве. Задача Коши решается в замкнутом виде при помощи формулы Пуассона, и анализ решения может быть проведен совершенно элементарно. Иное положение до последнего времени было в отношении смешанной задачи. Никаких общих результатов, касающихся решения задачи для областей произвольной формы, не было. В частности, не был теоретически оправдан известный метод Фурье. Тем самым не был выяснен вопрос о том, какой гладкости надо требовать от данных задачи и границы области для существования решения.
Весь комплекс работ О.А.Ладыженской по смешанной задаче представляет собою большой шаг вперед в этой мало исследованной области.
Необходимо особо отметить также доказанное автором интегральное неравенство, о котором мы говорили выше. Сейчас можно сказать, что решение смешанной задачи вышло из того неудовлетворительного положения, в котором оно находилось до последнего времени, и исследовано с такою же полнотой и общностью, что и решение задачи Коши.
Скачать Ладыженская О.А. - Смешанная задача для гиперболического уравнения [1953, PDF/DjVu]