Extrinsic Geometric Flows

Автор: alex66 от 24-09-2021, 23:46, Коментариев: 0


Название: Extrinsic Geometric Flows
Автор: Ben Andrews, Bennett Chow, Christine Guenther, Mat Langford
Издательство: American Mathematical Society
Год: 2020
Формат: PDF
Страниц: 791
Размер: 18.99 МБ
Язык: English

Extrinsic geometric flows are characterized by a submanifold evolving in an ambient space with velocity determined by its extrinsic curvature. The goal of this book is to give an extensive introduction to a few of the most prominent extrinsic flows, namely, the curve shortening flow, the mean curvature flow, the Gauß curvature flow, the inverse-mean curvature flow, and fully nonlinear flows of mean curvature and inverse-mean curvature type.
The authors highlight techniques and behaviors that frequently arise in the study of these (and other) flows. To illustrate the broad applicability of the techniques developed, they also consider general classes of fully nonlinear curvature flows. The book is written at the level of a graduate student who has had a basic course in differential geometry and has some familiarity with partial differential equations. It is intended also to be useful as a reference for specialists. In general, the authors provide detailed proofs, although for some more specialized results they may only present the main ideas; in such cases, they provide references for complete proofs. A brief survey of additional topics, with extensive references, can be found in the notes and commentary at the end of each chapter.

Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.