Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms

Автор: alex66 от 23-06-2022, 21:06, Коментариев: 0

Категория: КНИГИ » УЧЕБНАЯ ЛИТЕРАТУРА

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms
Название: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms
Автор: Tome Eftimov, Peter Korosec
Издательство: Springer
Год: 2022
Страниц: 141
Размер: 10.08 МБ
Формат: PDF
Язык: English

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants.
The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.
The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches.




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.