The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 1st and 2nd editions

Автор: krutisvet от 18-03-2025, 19:30, Коментариев: 0

Категория: КНИГИ » УЧЕБНАЯ ЛИТЕРАТУРА


Название: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 1st and 2nd editions
Серия: Springer Series in Statistics
Автор: Trevor Hastie, Robert Tibshirani, Jerome Friedman
Издательство: Springer
Год: 2001 / 2009
Формат: pdf
Страниц: 532 / 764
Размер: 29,8 Мб
Язык: английский

This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.
This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates.








ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.