Deep Belief Nets in C++ and CUDA C: Volume 1

Автор: bhaer от 23-04-2018, 21:05, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ


Название: Deep Belief Nets in C++ and CUDA C: Volume 1: Restricted Boltzmann Machines and Supervised Feedforward Networks
Автор: Timothy Masters
Издательство: Apress
Год: 2018
Страниц: 219
Формат: PDF, EPUB
Размер: 10 Mb
Язык: English

Discover the essential building blocks of the most common forms of deep belief networks. At each step this book provides intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards.

The first of three in a series on C++ and CUDA C deep learning and belief nets, Deep Belief Nets in C++ and CUDA C: Volume 1 shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a thought process that is capable of learning abstract concepts built from simpler primitives. As such, you’ll see that a typical deep belief net can learn to recognize complex patterns by optimizing millions of parameters, yet this model can still be resistant to overfitting.

All the routines and algorithms presented in the book are available in the code download, which also contains some libraries of related routines.


What You Will Learn
Employ deep learning using C++ and CUDA C
Work with supervised feedforward networks
Implement restricted Boltzmann machines
Use generative samplings
Discover why these are important

Who This Book Is For

Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.