Evaluating Machine Learning Models: A Beginner's Guide to Key Concepts and Pitfalls

Автор: daromir от 2-05-2018, 21:07, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Название: Evaluating Machine Learning Models: A Beginner's Guide to Key Concepts and Pitfalls
Автор: Alice Zheng
Издательство: O'Reilly Media
Год: 2015
ISBN: 9781491932469
Формат: pdf
Страниц: 58
Размер: , mb
Язык: English

Data science today is a lot like the Wild West: there’s endless opportunity and excitement, but also a lot of chaos and confusion. If you’re new to data science and applied machine learning, evaluating a machine-learning model can seem pretty overwhelming. Now you have help. With this O’Reilly report, machine-learning expert Alice Zheng takes you through the model evaluation basics.

In this overview, Zheng first introduces the machine-learning workflow, and then dives into evaluation metrics and model selection. The latter half of the report focuses on hyperparameter tuning and A/B testing, which may benefit more seasoned machine-learning practitioners.

With this report, you will:

• Learn the stages involved when developing a machine-learning model for use in a software application
• Understand the metrics used for supervised learning models, including classification, regression, and ranking
• Walk through evaluation mechanisms, such as hold?out validation, cross-validation, and bootstrapping
• Explore hyperparameter tuning in detail, and discover why it’s so difficult
• Learn the pitfalls of A/B testing, and examine a promising alternative: multi-armed bandits
• Get suggestions for further reading, as well as useful software packages




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.