Matlab Neural Network Toolbox Getting Started Guide

Автор: literator от 13-02-2019, 12:16, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Название: Matlab Neural Network Toolbox Getting Started Guide
Автор: Mark Hudson Beale, Martin T. Hagan, Howard B. Demuth
Издательство: The MathWorks, Inc
Год: 2018
Страниц: 136
Язык: английский
Формат: pdf (true)
Размер: 10.1 MB

Neural Network Toolbox provides algorithms, pretrained models, and apps to create, train, visualize, and simulate both shallow and deep neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control.

Deep learning networks include convolutional neural networks (ConvNets, CNNs), directed acyclic graph (DAG) network topologies, and autoencoders for image classification, regression, and feature learning. For time-series classification and regression, the toolbox provides long short-term memory (LSTM) deep learning networks.

You can visualize intermediate layers and activations, modify network architecture, and monitor training progress. For small training sets, you can quickly apply deep learning by performing transfer learning with pretrained deep network models (including Inception-v3, ResNet-50, ResNet-101, GoogLeNet, AlexNet, VGG-16, and VGG-19) and models imported from TensorFlow-Keras or Caffe.

To speed up training on large datasets, you can distribute computations and data across multicore processors and GPUs on the desktop (with Parallel Computing ToolboxTM), or scale up to clusters and clouds, including Amazon EC2 P2, P3, and G3 GPU instances (with MATLAB Distributed Computing ServerTM).

Скачать Matlab Neural Network Toolbox Getting Started Guide




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.