Source Separation and Machine Learning

Автор: bhaer от 20-11-2018, 11:58, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ


Название: Source Separation and Machine Learning
Автор: Jen-Tzung Chien
Издательство: Academic Press
Год: 2019
Страниц: 384
Формат: PDF
Размер: 12 Mb
Язык: English

Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.

Emphasizes the modern model-based Blind Source Separation (BSS) which closely connects the latest research topics of BSS and Machine Learning
Includes coverage of Bayesian learning, sparse learning, online learning, discriminative learning and deep learning
Presents a number of case studies of model-based BSS (categorizing them into four modern models - ICA, NMF, NTF and DNN), using a variety of learning algorithms that provide solutions for the construction of BSS systems




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.