Interpretable Machine Learning: A Guide for Making Black Box Models Explainable

Автор: literator от 23-06-2019, 16:39, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Название: Interpretable Machine Learning: A Guide for Making Black Box Models Explainable
Автор: Christoph Molnar
Издательство: Leanpub
Год: 2019
Страниц: 249
Язык: английский
Формат: pdf (true)
Размер: 10.18 MB

This book teaches you how to make Machine Learning (ML) models more interpretable. If you are looking for a good introduction to interpretable/explainable Machine Learning, this book is great. It covers lots of ground quickly and is well written, and is very up-to-date.

Machine Learning has great potential for improving products, processes and research. But computers usually do not explain their predictions which is a barrier to the adoption of ML. This book is about making machine learning models and their decisions interpretable.

After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME.

All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.

The book focuses on machine learning models for tabular data (also called relational or structured data) and less on computer vision and natural language processing tasks. Reading the book is recommended for machine learning practitioners, data scientists, statisticians, and anyone else interested in making machine learning models interpretable.

"If you are looking for a good introduction to interpretable/explainable machine learning, this book is great. It covers lots of ground quickly and is well written, and is very up-to-date." - Tim Miller

Скачать Interpretable Machine Learning: A Guide for Making Black Box Models Explainable




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.