Machine Learning Pocket Reference: Working with Structured Data in Python (First Edition)

Автор: buratino от 22-09-2020, 23:12, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Название: Machine Learning Pocket Reference: Working with Structured Data in Python (First Edition)
Автор: Matt Harrison
Издательство: O'Reilly Media
Год: 2019
Формат: true pdf, epub
Страниц: 320
Размер: 22.1 Mb, 23.3 Mb
Язык: English

With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project.
Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You’ll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.
This pocket reference includes sections that cover:
Classification, using the Titanic dataset
Cleaning data and dealing with missing data
Exploratory data analysis
Common preprocessing steps using sample data
Selecting features useful to the model
Model selection
Metrics and classification evaluation
Regression examples using k-nearest neighbor, decision trees, boosting, and more
Metrics for regression evaluation
Clustering
Dimensionality reduction
Scikit-learn pipelines

True PDF:
turbobit

EPUB:
turbobit


code



ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации

Изменил: buratino по причине: True PDF has been added - https://drive.google.com/file/d/1OomGSA2EAijMYNfGIDIoUzvj9jBvUi-f/view?usp=sharing

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.