Mastering Spark with R: The Complete Guide to Large-Scale Analysis and Modeling 1st Edition

Автор: buratino от 19-10-2019, 10:48, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Название: Mastering Spark with R: The Complete Guide to Large-Scale Analysis and Modeling First Edition
Автор: Javier Luraschi, Kevin Kuo, Edgar Ruiz
Издательство: O'Reilly Media
Год: 2019
Формат: epub
Страниц: 296
Размер: 15.4 Mb
Язык: English

If you’re like most R users, you have deep knowledge and love for statistics. But as your organization continues to collect huge amounts of data, adding tools such as Apache Spark makes a lot of sense. With this practical book, data scientists and professionals working with large-scale data applications will learn how to use Spark from R to tackle big data and big compute problems.
Authors Javier Luraschi, Kevin Kuo, and Edgar Ruiz show you how to use R with Spark to solve different data analysis problems. This book covers relevant data science topics, cluster computing, and issues that should interest even the most advanced users.
Analyze, explore, transform, and visualize data in Apache Spark with R
Create statistical models to extract information and predict outcomes; automate the process in production-ready workflows
Perform analysis and modeling across many machines using distributed computing techniques
Use large-scale data from multiple sources and different formats with ease from within Spark
Learn about alternative modeling frameworks for graph processing, geospatial analysis, and genomics at scale
Dive into advanced topics including custom transformations, real-time data processing, and creating custom Spark extensions




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.