Using R for item response theory model applications

Автор: literator от 13-03-2020, 12:26, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Название: Using R for item response theory model applications
Автор: Insu Paek, Ki Cole
Издательство: Routledge
Год: 2020
Страниц: 280
Язык: английский
Формат: pdf (true), djvu
Размер: 10.1 MB

Item response theory (IRT) is widely used in education and psychology and is expanding its applications to other social science areas, medical research, and business as well. Using R for Item Response Theory Model Applications is a practical guide for students, instructors, practitioners, and applied researchers who want to learn how to properly use R IRT packages to perform IRT model calibrations with their own data.

In recent years, the open-source statistical computing and programming language R has become very popular. Furthermore, IRT programs, known as packages, have been introduced in the R environment. The R software and its corresponding programs are free. Because of its open-source nature, the details of the programs, including source codes and package documentations, are openly available. Many have learned R through trial and error using the provided R program documentation, but this may be a particularly time-consuming experience depending on the extent of the documentation, the programs’ complexities, and possibly the learner’s background. This book was written to help minimize this inefficient process and laborious experience of those beginners who want to learn how to use R for IRT analysis. And in the process, readers may learn and understand additional features of the R IRT programs that they may not have discovered on their own.

This book provides practical line-by-line descriptions of how to use R IRT packages for various IRT models. The scope and coverage of the modeling in the book covers almost all models used in practice and in popular research, including:

dichotomous response modeling
polytomous response modeling
mixed format data modeling
concurrent multiple group modeling
fixed item parameter calibration
modelling with latent regression to include person-level covariate(s)
simple structure, or between-item, multidimensional modeling
cross-loading, or within-item, multidimensional modeling
high-dimensional modeling
bifactor modeling
testlet modeling
two-tier modeling

For beginners, this book provides a straightforward guide to learn how to use R for IRT applications. For more intermediate learners of IRT or users of R, this book will serve as a great time-saving tool for learning how to create the proper syntax, fit the various models, evaluate the models, and interpret the output using popular R IRT packages.

Скачать Using R for item response theory model applications




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.