Accelerated Optimization for Machine Learning: First-Order Algorithms

Автор: literator от 30-05-2020, 14:15, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Accelerated Optimization for Machine Learning: First-Order AlgorithmsНазвание: Accelerated Optimization for Machine Learning: First-Order Algorithms
Автор: Zhouchen Lin, Huan Li, Cong Fang
Издательство: Springer
Год: 2020
Страниц: 286
Язык: английский
Формат: pdf (true), djvu
Размер: 10.1 MB

This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine Learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of Machine Learning (ML).

Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for Machine Learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in Machine Learning in a short time.

Скачать Accelerated Optimization for Machine Learning: First-Order Algorithms




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.