Deep Learning - Das umfassende Handbuch: Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze

Автор: literator от 22-06-2020, 19:29, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Название: Deep Learning - Das umfassende Handbuch: Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze
Автор: Ian Goodfellow, Yoshua Bengio, Aaron Courville
Издательство: mitp Verlags GmbH & Co. KG
Год: 2018
Страниц: 912
Язык: немецкий
Формат: epub
Размер: 23.7 MB

Deep Learning ist ein Teilbereich des Machine Learnings und versetzt Computer in die Lage, aus Erfahrungen zu lernen. Dieses Buch behandelt umfassend alle Aspekte, die für den Einsatz und die Anwendung von Deep Learning eine Rolle spielen:

In Teil I erläutern die Autoren die mathematischen Grundlagen für Künstliche Intelligenz, Neuronale Netze, Machine Learning und Deep Learning.

In Teil II werden die aktuellen in der Praxis genutzten Verfahren und Algorithmen behandelt.

In Teil III geben die Autoren Einblick in aktuelle Forschungsansätze und zeigen neue zukunftsweisende Verfahren auf.

Dieses Buch richtet sich an Studenten und alle, die sich in der Forschung mit Deep Learning beschäftigen sowie an Softwareentwickler und Informatiker, die Deep Learning für eigene Produkte oder Plattformen einsetzen möchten. Dabei werden Grundkenntnisse in Mathematik, Informatik und Programmierung vorausgesetzt.

- Mathematische Grundlagen für Machine und Deep Learning
- Umfassende Behandlung zeitgemäßer Verfahren: tiefe Feedforward-Netze, Regularisierung, Performance-Optimierung sowie CNNs, Rekurrente und Rekursive Neuronale Netze
- Zukunftsweisende Deep-Learning-Ansätze sowie von Ian Goodfellow neu entwickelte Konzepte wie Generative Adversarial Networks

Teil I: Angewandte Mathematik und Grundlagen für das Machine Learning

Lineare Algebra
Wahrscheinlichkeits- und Informationstheorie
Bayessche Statistik
Numerische Berechnung

Teil II: Deep-Learning-Verfahren

Tiefe Feedforward-Netze
Regularisierung
Optimierung beim Trainieren tiefer Modelle
Convolutional Neural Networks
Sequenzmodellierung für Rekurrente und Rekursive Netze
Praxisorientierte Methodologie
Anwendungen: Computer Vision, Spracherkennung, Verarbeitung natürlicher Sprache

Teil III: Deep-Learning-Forschung

Lineare Faktorenmodelle
Autoencoder
Representation Learning
Probabilistische graphische Modelle
Monte-Carlo-Verfahren
Die Partitionsfunktion
Approximative Inferenz
Tiefe generative Modelle wie Restricted Boltzmann Machines, Deep-Belief-Netze, Gerichtete Generative Netze, Variational Autoencoder u.v.m.

Скачать Deep Learning. Das umfassende Handbuch: Grundlagen, aktuelle Verfahren und Algorithmen, neue Forschungsansätze




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.