Автор: Oliver Durr, Beate Sick and Elvis Murina
Издательство: Manning Publications
Год: 2020
Формат: True PDF
Страниц: 297
Размер: 16.1 Mb
Язык: English
Probabilistic Deep Learning with Python shows how probabilistic deep learning models gives readers the tools to identify and account for uncertainty and potential errors in their results.
Starting by applying the underlying maximum likelihood principle of curve fitting to deep learning, readers will move on to using the Python-based Tensorflow Probability framework, and set up Bayesian neural networks that can state their uncertainties.