Machine Learning Theory With Python: Part 1

Автор: literator от 5-02-2021, 19:45, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Machine Learning Theory With Python: Part 1Название: Machine Learning Theory With Python: Part 1
Автор: Aakhil A.
Издательство: Amazon.com Services LLC
Год: 2021
Страниц: 194
Язык: английский
Формат: pdf, azw3, epub
Размер: 20.6 MB

This Book covers everything you need to know to get started with Machine Learning (ML) in Python. It has all the theories and explanations of the code in detail.

Data Analysis is a process of inspecting, cleansing and transforming data with the goal of discovering useful information. This information can prove to be extremely valuable to business and affects lots of business decisions. Machine Learning on the other hand trains on that data to predict the outcomes beforehand. This is just one of the many places where the implementation of ML can be very useful. All the programming in this book is done through python 3 along with the help of few extremely helpful Python libraries such as NumPy, Scikit learn, Pandas and Matplotlib.

Machine Learning is the core subarea of Artificial Intelligence or AI. Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed. It is a rapidly rising field of study in artificial intelligence.
This book covers a lot of theory regarding Machine Learning and has lots of code samples in Python.

Prerequisites:
Basic Knowledge of Python
College level mathematics (Linear Algebra, Calculus, Statistics)
Important Python libraries such as NumPy, Pandas, Matplotlib.

Скачать Machine Learning Theory With Python: Part 1




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.