Deep Reinforcement Learning with Python: With PyTorch, TensorFlow and OpenAI Gym

Автор: TRex от 1-04-2021, 17:09, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Название: Deep Reinforcement Learning with Python: With PyTorch, TensorFlow and OpenAI Gym
Автор: Nimish Sanghi
Издательство: Apress
Год: 2021
Формат: EPUB, PDF
Страниц: 401
Размер: 21 Mb
Язык: English

Deep reinforcement learning is a fast-growing discipline that is making a significant impact in fields of autonomous vehicles, robotics, healthcare, finance, and many more. This book covers deep reinforcement learning using deep-q learning and policy gradient models with coding exercise.
You'll begin by reviewing the Markov decision processes, Bellman equations, and dynamic programming that form the core concepts and foundation of deep reinforcement learning. Next, you'll study model-free learning followed by function approximation using neural networks and deep learning. This is followed by various deep reinforcement learning algorithms such as deep q-networks, various flavors of actor-critic methods, and other policy-based methods.

You'll also look at exploration vs exploitation dilemma, a key consideration in reinforcement learning algorithms, along with Monte Carlo tree search (MCTS), which played a key role in the success of AlphaGo. The final chapters conclude with deep reinforcement learning implementation using popular deep learning frameworks such as TensorFlow and PyTorch. In the end, you'll understand deep reinforcement learning along with deep q networks and policy gradient models implementation with TensorFlow, PyTorch, and Open AI Gym.

What You'll Learn

Examine deep reinforcement learning
Implement deep learning algorithms using OpenAI’s Gym environment
Code your own game playing agents for Atari using actor-critic algorithms
Apply best practices for model building and algorithm training




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.