Автор: Jagdish Chand Bansal, Lance C. C. Fung, Milan Simic
Издательство: Springer
Год: 2021
Страниц: 187
Язык: английский
Формат: pdf (true), epub
Размер: 30.1 MB
This book aims to foster Machine Learning (ML) and Deep Learning (DL) approaches to data-driven applications, in which data governs the behaviour of applications. Applications of Artificial intelligence (AI)-based systems play a significant role in today’s software industry. The sensors data from hardware-based systems making a mammoth database, increasing day by day. Recent advances in big data generation and management have created an avenue for decision-makers to utilize these huge volumes of data for different purposes and analyses. AI-based application developers have long utilized conventional Machine Learning techniques to design better user interfaces and vulnerability predictions.
However, with the advancement of deep learning-based and neural-based networks and algorithms, researchers are able to explore and learn more about data and their exposed relationships or hidden features. This new trend of developing data-driven application systems seeks the adaptation of computational neural network algorithms and techniques in many application domains, including software systems, cyber security, human activity recognition, and behavioural modelling. As such, computational neural networks algorithms can be refined to address problems in data-driven applications. Original research and review works with model and build data-driven applications using computational algorithm are included as chapters in this book.
Скачать Advances in Applications of Data-Driven Computing