Machine Learning for Knowledge Discovery with R; Methodologies for Modeling, Inference, and Prediction

Автор: literator от 24-07-2021, 11:21, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Machine Learning for Knowledge Discovery with R; Methodologies for Modeling, Inference, and PredictionНазвание: Machine Learning for Knowledge Discovery with R; Methodologies for Modeling, Inference, and Prediction
Автор: Kao-Tai Tsai
Издательство: CRC Press
Год: 2022
Страниц: 261
Язык: английский
Формат: pdf (true)
Размер: 12.6 MB

Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein.

Key Features:

Contains statistical theory for the most recent supervised and unsupervised machine learning methodologies.

Emphasizes broad statistical thinking, judgment, graphical methods, and collaboration with subject-matter-experts in analysis, interpretation, and presentations.

Written by statistical data analysis practitioner for practitioners.

The book is suitable for upper-level-undergraduate or graduate-level data analysis course. It also serves as a useful desk-reference for data analysts in scientific research or industrial applications.

Скачать Machine Learning for Knowledge Discovery with R; Methodologies for Modeling, Inference, and Prediction




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.