Training Data for Machine Learning (8th Early release)

Автор: literator от 27-04-2023, 17:51, Коментариев: 2

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Training Data for Machine Learning (8th Early release)Название: Training Data for Machine Learning: Human Supervision from Annotation to Data Science (8th Early release)
Автор: Anthony Sarkis
Издательство: O’Reilly Media, Inc.
Год: 2023-04-25
Страниц: 259
Язык: английский
Формат: epub (true)
Размер: 10.2 MB

Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in Deep Learning systems relate to training data. But while training data is the foundation for successful Machine Learning, there are few comprehensive resources to help you ace the process. This hands-on guide explains how to work with and scale training data.

What is Training Data? Training Data is the control of a Supervised System. Training Data controls the system by defining the ground truth goals for the creation of Machine Learning models. This involves technical representations, people decisions, processes, tooling, system design, and a variety of new concepts specific to Training Data. In a sense, a Training Data mindset is a paradigm upon which a growing list of theories, research and standards are emerging. A Machine Learning (ML) Model that is created as the end result of a ML Training Process.

Training Data is not an algorithm, nor is it tied to a specific machine learning approach. Rather it’s the definition of what we want to achieve. A fundamental challenge is effectively identifying and mapping the desired human meaning into a machine readable form. The effectiveness of training data depends primarily on how well it relates to the human defined meaning and how reasonably it represents real model usage. Practically, choices around Training Data have a huge impact on the ability to train a model effectively.

You'll gain a solid understanding of the concepts, tools, and processes needed to:

Design, deploy, and ship training data for production-grade deep learning applications
Integrate with a growing ecosystem of tools
Recognize and correct new training data-based failure modes
Improve existing system performance and avoid development risks
Confidently use automation and acceleration approaches to more effectively create training data
Avoid data loss by structuring metadata around created datasets
Clearly explain training data concepts to subject matter experts and other shareholders
Successfully maintain, operate, and improve your system

Скачать Training Data for Machine Learning (8th Early release)




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
<
  • комментариев
  • публикации
24 февраля 2022 03:48

buratino

  • Группа: Релизеры
  • Регистрация: 2.04.2016
  • Статус: Пользователь offline
 
2021-10-13 second early release

<
  • комментариев
  • публикации
27 апреля 2023 17:52

literator

  • Группа: Релизеры
  • Регистрация: 20.03.2016
  • Статус: Пользователь offline
 
2023-04-25 8th Early release

Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.