Adversarial Robustness for Machine Learning

Автор: literator от 18-10-2022, 16:03, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Adversarial Robustness for Machine LearningНазвание: Adversarial Robustness for Machine Learning
Автор: Pin-Yu Chen, Cho-Jui Hsieh
Издательство: Academic Press/Elsevier
Год: 2023
Страниц: 300
Язык: английский
Формат: pdf (true), epub
Размер: 31.9 MB

Adversarial Robustness for Machine Learning summarizes the recent progress on this topic and introduces popular algorithms on adversarial attack, defense and verification. Sections cover adversarial attack, verification and defense, mainly focusing on image classication applications which are the standard benchmark considered in the adversarial robustness community. Other sections discuss adversarial examples beyond image classification, other threat models beyond testing time attack, and applications on adversarial robustness. For researchers, this book provides a thorough literature review that summarizes latest progress in the area, which can be a good reference for conducting future research.

In addition, the book can also be used as a textbook for graduate courses on adversarial robustness or trustworthy Machine Learning. While Machine Learning (ML) algorithms have achieved remarkable performance in many applications, recent studies have demonstrated their lack of robustness against adversarial disturbance. The lack of robustness brings security concerns in ML models for real applications such as self-driving cars, robotics controls and healthcare systems.

Summarizes the whole field of adversarial robustness for Machine learning models
Provides a clearly explained, self-contained reference
Introduces formulations, algorithms and intuitions

Скачать Adversarial Robustness for Machine Learning




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.