Digital Watermarking for Machine Learning Model: Techniques, Protocols and Applications

Автор: literator от 3-06-2023, 19:23, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Digital Watermarking for Machine Learning Model: Techniques, Protocols and ApplicationsНазвание: Digital Watermarking for Machine Learning Model: Techniques, Protocols and Applications
Автор: Lixin Fan, Chee Seng Chan, Qiang Yang
Издательство: Springer
Год: 2023
Страниц: 233
Язык: английский
Формат: pdf (true)
Размер: 10.1 MB

Machine Learning (ML) models, especially large pretrained Deep Learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR). Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model’s owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts. In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, Natural Language Processing (NLP) and Reinforcement Learning.

This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking. Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed Federated Learning settings.

Скачать Digital Watermarking for Machine Learning Model: Techniques, Protocols and Applications




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.