Изучаем Ray

Автор: literator от 11-09-2023, 19:25, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Название: Изучаем Ray. Гибкие распределенные вычисления на Python в машинном обучении
Автор: Макс Пумперла, Эдвард Оукс, Ричард Ляо
Издательство: Books.kz/ДМК Пресс
Год: 2023
Страниц: 292
Язык: русский
Формат: pdf
Размер: 10.9 MB

Наука о данных — сложная и быстро развивающаяся область, которая нуждается в мощных инструментах и фреймворках для управления огромными объемами данных, генерируемых каждый день. Ray – это платформа кластерных вычислений для распространения и запуска Python-кода, даже со сложными библиотеками или пакетами, на кластерах бесконечного размера. Помимо Python, также Ray предоставляет API для Java и C++. Фреймворк использует задачи (функции) и субъекты (классы), чтобы распараллеливать пользовательский код. Ray помогает реализовать параллельные и распределенные вычисления в жизненном цикле науки о данных.

За последние несколько лет фреймворк распределенных вычислений Ray получал все большее предпочтение в связи со своей способностью упрощать разработку таких приложений. Ray включает в себя гибкое ядро и набор мощных библиотек, которые позволяют разработчикам легко масштабировать различные рабочие нагрузки, включая тренировку, гиперпараметрическую настройку, обуче ние с подкреплением, подачу моделей в качестве служб и пакетную обработку неструктурированных данных. Фреймворк Ray является одним из самых популярных проектов с открытым исходным кодом и используется тысячами компаний для внедрения широкого спектра вычислительных решений, от платформ машинного обуче ния до рекомендательных систем, систем обнаружения мошенничества и тренировки крупнейших моделей, в том числе ChatGPT компании Open AI.

Признавая, что масштабирование является одновременно необходимостью и вызовом времени, фреймворк Ray призван упростить разработчикам распределенные вычисления. Благодаря ему распределенные вычисления стали доступными для неспециалистов и стало довольно легко масштабировать скрипты Python по нескольким узлам. Фреймворк Ray хорошо зарекомендовал себя в масштабировании вычислительно интенсивных рабочих нагрузок и рабочих нагрузок интенсивных по использованию данных, таких как предобработка данных и тренировка моделей, и он непосредственно ориентирован на рабочие нагрузки машинного обуче ния, требующие масштабирования.

Издание предназначено для программистов на Python, инженеров и исследователей данных.

Скачать Изучаем Ray




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.