Neural Networks Using MATLAB. Cluster Analysis and Classification

Автор: daromir от 24-03-2018, 07:34, Коментариев: 0

Категория: КНИГИ » СЕТЕВЫЕ ТЕХНОЛОГИИ

Название: Neural Networks Using MATLAB. Cluster Analysis and Classification
Автор: K. Taylor
Издательство: CreateSpace Independent Publishing Platform
Год: 2017
ISBN: 9781543172584
Формат: azw3
Страниц: 396
Размер: 5,3 mb
Язык: English

MATLAB has the tool Neural Network Toolbox that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks.

To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following:

• Deep learning, including convolutional neural networks and autoencoders
• Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox)
• Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN)
• Unsupervised learning algorithms, including self-organizing maps and competitive layers
• Apps for data-fitting, pattern recognition, and clustering
• Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance
• Simulink blocks for building and evaluating neural networks and for control systems applications




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.