Автор: Erkan Oterkus, Selda Oterkus
Издательство: Elsevier
Год: 2021
Страниц: 438
Язык: английский
Формат: pdf (true)
Размер: 33.1 MB
This book provides readers with an incisive look at cutting-edge peridynamic modeling methods, numerical techniques, their applications, and potential future directions for the field. It starts with an introductory chapter authored by Stewart Silling, who originally developed peridynamics. It then looks at new concepts in the field, with chapters covering dual-horizon peridynamics, peridynamics for axisymmetric analysis, beam and plate models in peridynamics, coupled peridynamics and XFEM, peridynamics for dynamic fracture modeling, and more. From there, it segues into coverage of cutting-edge applications of peridynamics, exploring its biological applications, modeling at the nanoscale, peridynamics for composites delamination and damage in ceramics, and more, concluding with a chapter on the application of Artificial Intelligence and Machine Learning in peridynamics.
Although peridynamics was originally introduced by Dr. Stewart A. Silling from Sandia National Laboratories in 2000 for predicting and simulating the failure response of structures, it has been extended and applied to many challenging problems from different disciplines. It has become a unique approach for multiphysics analysis with damage prediction capability across varying length scales. Since its inception, peridynamics is growing exponentially by contributions and publications of researchers from different parts of the world.
The peridynamic theory is an alternative form of continuum mechanics that is more compatible than the standard (local) theory with discontinuities such as growing cracks. In the peridynamic theory, the equation of motion and material models use integrals rather than partial differential equations. This allows the peridynamic equations to be applied directly on the surface of a crack. The equation of motion replaces the term in the local theory that characterizes the internal forces within a material.
Скачать Peridynamic Modeling, Numerical Techniques, and Applications