Practical TensorFlow.js: Deep Learning in Web App Development

Автор: TRex от 19-09-2020, 08:50, Коментариев: 0

Категория: КНИГИ » WEB-РАЗРАБОТКИ

Название: Practical TensorFlow.js: Deep Learning in Web App Development
Автор: Rivera, Juan
Издательство: Apress
Год: 2020
Формат: PDF,EPUB
Страниц: 318
Размер: 10 Mb
Язык: English

Develop and deploy deep learning web apps using the TensorFlow.js library. TensorFlow.​js​ is part of a bigger framework named TensorFlow, which has many tools that supplement it, such as TensorBoard​, ​ml5js​, ​tfjs-vis. This book will cover all these technologies and show they integrate with TensorFlow.​js​ to create intelligent web apps. The most common and accessible platform users interact with everyday is their web browser, making it an ideal environment to deploy AI systems. TensorFlow.js is a well-known and battle-tested library for creating browser solutions. Working in jаvascript, the so-called language of the web, directly on a browser, you can develop and serve deep learning applications.You'll work with deep learning algorithms such as feedforward neural networks, convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN). Through hands-on examples, apply these networks in use cases related to image classification, natural language processing, object detection, dimensionality reduction, image translation, transfer learning, and time series analysis.

Also, these topics are very varied in terms of the kind of data they use, their output, and the training phase. Not everything in machine learning is deep networks, there is also what some call shallow or traditional machine learning. While TensorFlow.js is not the most common place to implement these, you'll be introduce them and review the basics of machine learning through TensorFlow.js.

You will:
Build deep learning products suitable for web browsers
Work with deep learning algorithms such as feedforward neural networks, convolutional neural networks (CNN), recurrent neural networks (RNN), and generative adversarial network (GAN)
Develop apps using image classification, natural language processing, object detection, dimensionality reduction, image translation, transfer learning, and time series analysis




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.