Название: Federated Learning: Unlocking the Power of Collaborative Intelligence
Автор: M. Irfan Uddin, Wali Khan Mashwani
Издательство: CRC Press
Серия: Chapman & Hall/CRC Artificial Intelligence and Robotics Series
Год: 2025
Страниц: 194
Язык: английский
Формат: pdf (true)
Размер: 15.6 MB
Federated Learning: Unlocking the Power of Collaborative Intelligence is a definitive guide to the transformative potential of Federated Learning. This book delves into Federated Learning principles, techniques, and applications, and offers practical insights and real-world case studies to showcase its capabilities and benefits. The book begins with a survey of the fundamentals of Federated Learning (FI) and its significance in the era of privacy concerns and data decentralization. Through clear explanations and illustrative examples, the book presents various Federated Learning frameworks, architectures, and communication protocols. Privacy-preserving mechanisms are also explored, like differential privacy and secure aggregation, offering the practical knowledge needed to address privacy challenges in Federated Learning systems. This book concludes by highlighting the challenges and emerging trends in Federated Learning, emphasizing the importance of trust, fairness, and accountability, and provides insights into scalability and efficiency considerations. Federated Learning has revolutionized the area of Machine Learning as Federated Learning offers decentralized privacy-preserving techniques for group model training without transferring the raw data. Federated Learning allows the use of multiple devices, and organizations prefer it as a client as it allows the use of local data to train a global model. This is compared to traditional centralized Machine Learning which collects data in one location. This decentralized method preserves the fundamental principle of data protection while enabling the development of innovative applications by tackling the important problem of data security and privacy.