Курс высшей алгебры (9-е изд.) - Курош А.Г.

Автор: admin от 29-10-2019, 08:07, Коментариев: 0

Категория: КНИГИ » УЧЕБНАЯ ЛИТЕРАТУРА

Название: Курс высшей алгебры (9-е изд.) - Курош А.Г.
Автор: А.Г. Курош
Издательство: Наука
Год выпуска: 1968
Жанр: Mатематика студентам
Формат: PDF, DJVU
Страниц: 431
Размер: 22.5 Мб
Язык: Русский

Курош А.Г. Курс высшей алгебры. – М., 1968.
Книга обеспечивает весь обязательный университетский курс высшей алгебры, а не только его первые два семестра. В книгу включено несколько новых глав. Одна из них посвящена основам теории групп, а остальные относятся к линейной алгебре - теория линейных пространств, теория евклидовых пространств и жордановой нормальной формы матрицы.

Студентам будет удобно иметь весь обязательный материал собранным в одном учебнике и изложенным единым стилем.



ОГЛАВЛЕНИЕ

Предисловие к шестому изданию
Введение

Глава первая. Системы линейных уравнений. Определители
§ 1. Метод последовательного исключения неизвестных
§ 2. Определители второго и третьего порядков
§ 3. Перестановки и подстановки
§ 4. Определители n-го порядка
§ 5. Миноры и их алгебраические дополнения
§ 6. Вычисление определителей
§ 7. Правило Крамера

Глава вторая. Системы линейных уравнений (общая теория)
§ 8. n-мерное векторное пространство
§ 9. Линейная зависимость векторов
§ 10. Ранг матрицы
§ 11. Системы линейных уравнений
§ 12. Системы линейных однородных уравнений

Глава третья. Алгебра матриц
§ 13. Умножение матрац
§ 14. Обратная матрица
§ 15. Сложение матриц и умножение матрицы на число
§ 16. Аксиоматическое построение теории определителей

Глава четвертая. Комплексные числа
§ 17. Система комплексных чисел
§ 18. Дальнейшее изучение комплексных чисел
§ 19. Извлечение корня из комплексных чисел

Глава пятая. Многочлены и их корни
§ 20. Операции над многочленами
§ 21. Делители. Наибольший общий делитель
§ 22. Корни многочленов
§ 23. Основная теорема
§ 24. Следствия из основной теоремы
§ 25. Рациональные дроби

Глава шестая. Квадратичные формы
§ 26. Приведение квадратичной формы к каноническому виду
§ 27. Закон инерции
§ 28. Положительно определенные формы

Глава седьмая. Линейные пространства
§ 29. Определение линейного пространства. Изоморфизм
§ 30. Конечномерные пространства. Базы
§ 31. Линейные преобразования
§ 32. Линейные подпространства
§ 33. Характеристические корни и собственные значения

Глава восьмая. Евклидовы пространства
§ 34. Определение евклидова пространства. Ортонормированные базы
§ 35. Ортогональные матрицы, ортогональные преобразования
§ 36. Симметрические преобразования
§ 37. Приведение квадратичной формы к главным осям. Пары форм

Глава девятая. Вычисление корней многочленов
§ 38. Уравнения второй, третьей и четвертой степени
§ 39. Границы корней
§ 40. Теорема Штурма
§ 41. Другие теоремы о числе действительных корней
§ 42. Приближенное вычисление корней

Глава десятая. Поля и многочлены
§ 43. Числовые кольца и поля
§ 44. Кольцо
§ 45. Поле
§ 46. Изоморфизм колец (полей). Единственность поля комплексных чисел
§ 47. Линейная алгебра и алгебра многочлена над произвольным полем
§ 48. Разложение многочленов на неприводимые множители
§ 49. Теорема существования корня
§ 50. Поле рациональных дробей

Глава одиннадцатая. Многочлены от нескольких неизвестных
§ 51. Кольцо многочленов от нескольких неизвестных
§ 52. Симметрические многочлены
§ 53. Дополнительные замечания о симметрических многочленах
§ 54. Результант. Исключение неизвестного. Дискриминант
§ 55. Второе доказательство основной теоремы алгебры комплексных чисел

Глава двенадцатая. Многочлены с рациональными коэффициентами
§ 56. Приводимость многочленов над полем рациональных чисел
§ 57. Рациональные корни целочисленных многочленов
§ 58. Алгебраические числа

Глава тринадцатая. Нормальная форма матрицы
§ 59. Эквивалентность матриц
§ 60. Унимодулярные ?-матрицы. Связь подобия числовых матриц с эквивалентностью их характеристических матриц
§ 61. Жорданова нормальная форма
§ 62. Минимальный многочлен

Глава четырнадцатая. Группы
§ 63. Определение и примеры групп
§ 64. Подгруппы
§ 65. Нормальные делители, фактор-группы, гомоморфизмы
§ 66. Прямые суммы абелевых групп
§ 67. Конечные абелевы группы

Указатель литературы
Предметный указатель
Скачать с облака






ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.