Machine Learning Approaches in Cyber Security Analytics

Автор: literator от 17-12-2019, 17:12, Коментариев: 0

Категория: КНИГИ » ПРОГРАММИРОВАНИЕ

Название: Machine Learning Approaches in Cyber Security Analytics
Автор: Tony Thomas, Athira P. Vijayaraghavan
Издательство: Springer
Год: 2020
Страниц: 217
Язык: английский
Формат: pdf (true)
Размер: 10.1 MB

This book introduces various machine learning methods for cyber security analytics. With an overwhelming amount of data being generated and transferred over various networks, monitoring everything that is exchanged and identifying potential cyber threats and attacks poses a serious challenge for cyber experts. Further, as cyber attacks become more frequent and sophisticated, there is a requirement for machines to predict, detect, and identify them more rapidly. Machine learning offers various tools and techniques to automate and quickly predict, detect, and identify cyber attacks.

The main emphasis will be on the discussion of machine learning algorithms which have potential applications in cybersecurity analytics. There will be discussions on how cybersecurity analytics complements machine learning research. The potential applications include malware detection, biometrics, anomaly detection, cyberattack prediction, and so on.

The proposed book is a research monograph on cybersecurity analytics using various machine intelligence approaches. Most of the contents of the book are out of the original research by the authors. The cybersecurity and machine learning researchers, graduate students, and developers in cybersecurity will be benefited from this book. The prerequisites needed to understand the book are undergraduate-level knowledge mathematics, statistics, and computer science.

Contents:


Скачать Machine Learning Approaches in Cyber Security Analytics




ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


Нашел ошибку? Есть жалоба? Жми!
Пожаловаться администрации
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.