How Algorithms Create and Prevent Fake News: Exploring the Impacts of Social Media, Deepfakes, GPT-3, and More

Автор: TRex от 14-07-2021, 14:53, Коментариев: 0

Категория: КНИГИ » СЕТЕВЫЕ ТЕХНОЛОГИИ

Название: How Algorithms Create and Prevent Fake News: Exploring the Impacts of Social Media, Deepfakes, GPT-3, and More
Автор: Noah Giansiracusa
Издательство: Apress
Год: 2021
Формат: ePUB, PDF
Страниц: 239
Размер: 10 Mb
Язык: English

From deepfakes to GPT-3, deep learning is now powering a new assault on our ability to tell what’s real and what’s not, bringing a whole new algorithmic side to fake news. On the other hand, remarkable methods are being developed to help automate fact-checking and the detection of fake news and doctored media. Success in the modern business world requires you to understand these algorithmic currents, and to recognize the strengths, limits, and impacts of deep learning---especially when it comes to discerning the truth and differentiating fact from fiction.
This book tells the stories of this algorithmic battle for the truth and how it impacts individuals and society at large. In doing so, it weaves together the human stories and what’s at stake here, a simplified technical background on how these algorithms work, and an accessible survey of the research literature exploring these various topics.
How Algorithms Create and Prevent Fake News is an accessible, broad account of the various ways that data-driven algorithms have been distorting reality and rendering the truth harder to grasp. From news aggregators to Google searches to YouTube recommendations to Facebook news feeds, the way we obtain information today is filtered through the lens of tech giant algorithms. The way data is collected, labelled, and stored has a big impact on the machine learning algorithms that are trained on it, and this is a main source of algorithmic bias ­– which gets amplified in harmful data feedback loops. Don’t be afraid: with this book you’ll see the remedies and technical solutions that are being applied to oppose these harmful trends. There is hope.
What You Will Learn

  • The ways that data labeling and storage impact machine learning and how feedback loops can occur
  • The history and inner-workings of YouTube’s recommendation algorithm
  • The state-of-the-art capabilities of AI-powered text generation (GPT-3) and video synthesis/doctoring (deepfakes) and how these technologies have been used so far
  • The algorithmic tools available to help with automated fact-checking and truth-detection




    ОТСУТСТВУЕТ ССЫЛКА/ НЕ РАБОЧАЯ ССЫЛКА ЕСТЬ РЕШЕНИЕ, ПИШИМ СЮДА!


    Нашел ошибку? Есть жалоба? Жми!
    Пожаловаться администрации
  • Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
    Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
    Информация
    Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.